A Generic Path Algorithm for Regularized Statistical Estimation.
نویسندگان
چکیده
Regularization is widely used in statistics and machine learning to prevent overfitting and gear solution towards prior information. In general, a regularized estimation problem minimizes the sum of a loss function and a penalty term. The penalty term is usually weighted by a tuning parameter and encourages certain constraints on the parameters to be estimated. Particular choices of constraints lead to the popular lasso, fused-lasso, and other generalized ℓ1 penalized regression methods. In this article we follow a recent idea by Wu (2011, 2012) and propose an exact path solver based on ordinary differential equations (EPSODE) that works for any convex loss function and can deal with generalized ℓ1 penalties as well as more complicated regularization such as inequality constraints encountered in shape-restricted regressions and nonparametric density estimation. Non-asymptotic error bounds for the equality regularized estimates are derived. In practice, the EPSODE can be coupled with AIC, BIC, Cp or cross-validation to select an optimal tuning parameter, or provides a convenient model space for performing model averaging or aggregation. Our applications to generalized ℓ1 regularized generalized linear models, shape-restricted regressions, Gaussian graphical models, and nonparametric density estimation showcase the potential of the EPSODE algorithm.
منابع مشابه
Regularized Autoregressive Multiple Frequency Estimation
The paper addresses a problem of tracking multiple number of frequencies using Regularized Autoregressive (RAR) approximation. The RAR procedure allows to decrease approximation bias, comparing to other AR-based frequency detection methods, while still providing competitive variance of sample estimates. We show that the RAR estimates of multiple periodicities are consistent in probabilit...
متن کاملAn Optimized Online Secondary Path Modeling Method for Single-Channel Feedback ANC Systems
This paper proposes a new method for online secondary path modeling in feedback active noise control (ANC) systems. In practical cases, the secondary path is usually time-varying. For these cases, online modeling of secondary path is required to ensure convergence of the system. In literature the secondary path estimation is usually performed offline, prior to online modeling, where in the prop...
متن کاملPiecewise Linear Regularized Solution Paths
We consider the generic regularized optimization problem β̂(λ) = arg minβ L(y,Xβ) + λJ (β). Efron, Hastie, Johnstone and Tibshirani [Ann. Statist. 32 (2004) 407–499] have shown that for the LASSO—that is, if L is squared error loss and J (β)= ‖β‖1 is the 1 norm of β—the optimal coefficient path is piecewise linear, that is, ∂β̂(λ)/∂λ is piecewise constant. We derive a general characterization of ...
متن کاملRegularized Laplacian Estimation and Fast Eigenvector Approximation
Recently, Mahoney and Orecchia demonstrated that popular diffusion-based procedures to compute a quick approximation to the first nontrivial eigenvector of a data graph Laplacian exactly solve certain regularized Semi-Definite Programs (SDPs). In this paper, we extend that result by providing a statistical interpretation of their approximation procedure. Our interpretation will be analogous to ...
متن کاملRegularized matrix regression.
Modern technologies are producing a wealth of data with complex structures. For instance, in two-dimensional digital imaging, flow cytometry and electroencephalography, matrix-type covariates frequently arise when measurements are obtained for each combination of two underlying variables. To address scientific questions arising from those data, new regression methods that take matrices as covar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Statistical Association
دوره 109 506 شماره
صفحات -
تاریخ انتشار 2014